PH^{*}ENIX measurements of open and hidden heavy-flavor in p+p, p+Al, and p/d/³He+Au collisions across a wide range of rapidity

Sanghoon Lim
for the PHENIX collaboration
Los Alamos National Lab

Heavy quarks can be sensitive to various effects:

Parton distribution functions in nuclei are modified compared to those in nucleon

Heavy quarks can be sensitive to various effects:

Parton distribution functions in nuclei are modified compared to those in nucleon

Scattering with nuclear matter:

(Initial-state and/or final-state interaction)

- transverse momentum broadening
- energy loss
- break-up of bound states

Open and hidden heavy-flavor measurements at PHENIX

Open and hidden heavy-flavor measurements at PHENIX

VTX and FVTX provide precise tracking/vertex

Previous results: J/ψ and open heavy-flavor in d+Au

- In **0-20% central** d+Au collisions
 - R_{dA} of HF muon and J/ψ are similar at forward rapidity
 - charm production is enhanced but
 J/ψ production is significantly
 suppressed at mid- and backward rapidity

Open & hidden heavy-flavor in PHENIX

Previous results: $\psi(2S)$ in d+Au at mid-rapidity

Previous results: $\psi(2S)$ in d+Au at mid-rapidity

- Breakup of quarkonia due to interaction with nuclear matter
 - Larger suppression of the weakly bound state $\psi(2S)$
 - Interaction with
 co-movers? (model: Phys. Lett. B 749 (2015))
 medium? (model: Nucl. Phys. A 943 (2015))

$\psi(2S)$ extraction with FVTX

MuTr only

Phys. Rev. D 85, 092004

Resolve $\psi(2S)$ by measuring opening angle in front of absorber

FVTX+MuTr

arXiv:1609.06550 (accepted in PRC)

$\psi(2S)/\psi(1S)$ in p+p compared with model and other results

$\psi(2S)/\psi(1S)$ in p+p compared with model and other results

$\psi(2S)$ at forward/backward in small systems

Open & hidden heavy-flavor in PHENIX

$\psi(2S)$ at forward/backward in small systems

$\psi(2S)$ at forward/backward in small systems

ψ(2S), more easily broken up

ψ(2S), more easily broken up

The co-mover dissociation model predicts a larger suppression of $\psi(2S)$ at nucleus-going direction, but underestimate the magnitude.

Comparison to LHC

Similar relative suppression of $\psi(2S)$ at backward rapidity, but larger relative suppression of $\psi(2S)$ at forward rapidity at LHC

Comparison to LHC

Similar relative suppression of $\psi(2S)$ at backward rapidity, but larger relative suppression of $\psi(2S)$ at forward rapidity at LHC

Relative suppression of $\psi(2S)$ increases as the co-moving particle density increases

Open heavy-flavor via di-electrons at mid-rapidity

Open heavy-flavor via di-electrons at mid-rapidity

Open heavy-flavor via di-electrons at mid-rapidity

Other e⁺e⁻ sources from hadron decays (vector meson and pseudoscalar meson) deduced from hadron measurements, and Drell-Yan from PYTHIA

Di-electron mass spectrum in p+p

The cocktail including heavy-flavor contribution describes the data well

Mass and p_T distribution of di-electrons from HF

Mass and p_T distribution of di-electrons from HF

No significant modification of di-electrons from heavy-flavor in d+Au collisions compared to p+p

Separation of charm and bottom components in mass and p_T

Fit Range 1.15<m_{ee}<2.4 GeV/c² 4.1<m_{ee}<8.0 GeV/c²

• Open charm and bottom yields determined by simultaneous fit in mass and p_{T} distributions

Separation of charm and bottom components in mass and p_T

Fit Range 1.15<m_{ee}<2.4 GeV/c² 4.1<m_{ee}<8.0 GeV/c²

Charm + Bottom Charm Bottom

- Open charm and bottom yields determined by simultaneous fit in mass and p_{T} distributions
- Three independent extractions based on different models: PYTHIA / MC@NLO / POWHEG

Separation of charm and bottom components in mass and p_{T}

- Open charm and bottom yields determined by simultaneous fit in mass and p_{T} distributions
- Three independent extractions based on different models: PYTHIA / MC@NLO / POWHEG

Separation of charm and bottom components in mass and p_T

Charm + Bottom Charm Bottom

Charm dominates Low pT, low mass

Bottom dominates Low p_T, high mass • High p_T

- Open charm and bottom yields determined by simultaneous fit in mass and p_{T} distributions
- Three independent extractions based on different models: PYTHIA / MC@NLO / POWHEG

Spectra are well reproduced by fit with all models

Model based extrapolation of charm and bottom cross section and R_{dA}

Extrapolated charm cross section depends more strongly on model than bottom

 \rightarrow decay kinematics randomize the opening angle for bottom (m_q>>p)

Model based extrapolation of charm and bottom cross section and R_{dA}

Extrapolated charm cross section depends more strongly on model than bottom

 \rightarrow decay kinematics randomize the opening angle for bottom (m_a>>p)

Model based extrapolation of charm and bottom cross section and R_{dA}

Extrapolated charm cross section depends more strongly on model than bottom

 \rightarrow decay kinematics randomize the opening angle for bottom (m_q>>p)

No model dependence of R_{dA}
No significant modification in d+Au
within uncertainties

Summary & outlook

Open and hidden heavy-flavor measurements in small systems

- Preferential suppression of $\psi(2S)$ at backward rapidity (Nucleus-going direction)
 - Inclusive J/ ψ , Upsilon, and single lepton results in future

Summary & outlook

Open and hidden heavy-flavor measurements in small systems

- Preferential suppression of $\psi(2S)$ at backward rapidity (Nucleus-going direction)
 - Inclusive J/Ψ , Upsilon, and single lepton results in future
- Within uncertainties, no evidence of modification of charm and bottom production via di-electrons at mid-rapidity in d+Au
 - Di-muon results at forward/backward rapidity in future

BACK UP

Di-electron mass spectrum in d+Au

Open heavy-flavor via di-electron

Separation of e⁺e⁻ from charm and bottom (PYTHIA)

Separation of e⁺e⁻ from charm and bottom (MC@NLO)

Separation of e⁺e⁻ from charm and bottom (POWHEG)

